Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339047

RESUMO

Probiotic therapy needs consideration as an alternative strategy to prevent and possibly treat corneal infection. This study aimed to assess the preventive effect of Lactobacillus reuteri and Bifidobacterium longum subsp. infantis on reducing the infection of human corneal epithelial (HCE) cells caused by Pseudomonas aeruginosa. The probiotics' preventive effect against infection was evaluated in cell monolayers pretreated with each probiotic 1 h and 24 h prior to P. aeruginosa challenge followed by 1 h and 24 h of growth in combination. Cell adhesion, cytotoxicity, anti-inflammatory, and antinitrosative activities were evaluated. L. reuteri and B. longum adhered to HCE cells, preserved occludin tight junctions' integrity, and increased mucin production on a SkinEthicTM HCE model. Pretreatment with L. reuteri or B. longum significantly protected HCE cells from infection at 24 h, increasing cell viability at 110% (110.51 ± 5.15; p ≤ 0.05) and 137% (137.55 ± 11.97; p ≤ 0.05), respectively. Each probiotic showed anti-inflammatory and antinitrosative activities, reducing TNF-α level (p ≤ 0.001) and NOx amount (p ≤ 0.001) and reestablishing IL-10 level (p ≤ 0.001). In conclusion, this study demonstrated that L. reuteri and B. longum exert protective effects in the context of corneal infection caused by P. aeruginosa by restoring cell viability and modulating inflammatory cytokine release.


Assuntos
Dieldrin/análogos & derivados , Ceratite , Limosilactobacillus reuteri , Probióticos , Infecções por Pseudomonas , Humanos , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/metabolismo , Células Epiteliais/metabolismo , Probióticos/farmacologia , Probióticos/metabolismo , Anti-Inflamatórios/metabolismo
2.
Molecules ; 28(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570634

RESUMO

Developing biocompatible nitric oxide (NO) photoreleasing nanoconstucts is of great interest in view of the large variety of biological roles that NO plays and the unique advantage light offers in controlling NO release in space and time. In this contribution, we report the supramolecular assemblies of two NO photodonors (NOPDs), NBF-NO and RHD-NO, as water-dispersible nanogels, ca. 10 nm in diameter, based on γ-cyclodextrins (γ-CDng). These NOPDs, containing amino-nitro-benzofurazan and rhodamine chromophores as light harvesting antennae, can be activated by visible light, are highly hydrophobic and can be effectively entrapped within the γ-CDng. Despite being confined in a very restricted environment, neither NOPD suffer self-aggregation and preserve their photochemical and photophysical properties well. The blue light excitation of the weakly fluorescent γ-CDng/NBF-NO complex results in effective NO release and the concomitant generation of the highly green, fluorescent co-product, which acts as an optical NO reporter. Moreover, the green light excitation of the persistent red fluorescent γ-CDng/RHD-NO triggers NO photorelease without significantly modifying the emission properties. The activatable and persistent fluorescence emissions of the NOPDs are useful for monitoring their interactions with the Gram-positive methicillin-resistant Staphylococcus aureus, whose growth is significantly inhibited by γ-CDng/RHD-NO upon green light irradiation.


Assuntos
Ciclodextrinas , Staphylococcus aureus Resistente à Meticilina , Óxido Nítrico/química , Nanogéis , Doadores de Óxido Nítrico/farmacologia , Corantes
3.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511387

RESUMO

The formulation of eco-friendly biodegradable packaging has received great attention during the last decades as an alternative to traditional widespread petroleum-based food packaging. With this aim, we designed and tested the properties of polyhydroxyalkanoates (PHA)-based bioplastics functionalized with phloretin as far as antioxidant, antimicrobial, and morpho-mechanic features are concerned. Mechanical and hydrophilicity features investigations revealed a mild influence of phloretin on the novel materials as a function of the concentration utilized (5, 7.5, 10, and 20 mg) with variation in FTIR e RAMAN spectra as well as in mechanical properties. Functionalization of PHA-based polymers resulted in the acquisition of the antioxidant activity (in a dose-dependent manner) tested by DPPH, TEAC, FRAR, and chelating assays, and in a decrease in the growth of food-borne pathogens (Listeria monocytogenes ATCC 13932). Finally, apple samples were packed in the functionalized PHA films for 24, 48, and 72 h, observing remarkable effects on the stabilization of apple samples. The results open the possibility to utilize phloretin as a functionalizing agent for bioplastic formulation, especially in relation to food packaging.


Assuntos
Anti-Infecciosos , Poli-Hidroxialcanoatos , Embalagem de Alimentos/métodos , Antioxidantes/farmacologia , Floretina/farmacologia , Biopolímeros , Anti-Infecciosos/farmacologia
4.
Curr Microbiol ; 80(9): 303, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493762

RESUMO

Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are known to be responsible of various infections, including biofilm-associated diseases. The aim of this study was to analyze 19 strains of S. aureus from orthopedic sites in terms of phenotypic antimicrobial susceptibility against 13 selected antibiotics, slime/biofilm formation, molecular analysis of specific antibiotic resistance genes (mecA, cfr, rpoB), and biofilm-associated genes (icaADBC operon). Furthermore, the effect of phloretin on the production of biofilm was evaluated on 8 chosen isolates. The susceptibility test confirmed almost all strains were resistant to cefoxitin and oxacillin. Most strains possess the mecA, whereas none of the strains had the cfr gene. Four strains (1, 7, 10, and 24) presented single-nucleotide polymorphisms (SNPs) in rpoB, which confer rifampicin resistance. IcaD was detected in all tested strains, whereas icaR was only found in two strains (24 and 30). Phloretin had a dose-dependent effect on biofilm production. Specifically, 0.5 × MIC determined biofilm inhibition in 5 out of 8 strains (8, 24, 25, 27, 30), whereas an increase in biofilm production was detected with phloretin at the 0.125 × MIC across all tested strains. These data are useful to potentially develop novel compounds against antibiotic-resistant S. aureus.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Floretina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Testes de Sensibilidade Microbiana
5.
Int J Pharm ; 642: 123067, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37257794

RESUMO

This study deals with the development of novel poly(lactic acid)-poly(ethylene glycol) nanoparticles (PLA-PEG NPs) for the efficient and prolonged delivery of Linezolid (LNZ), a synthetic antibacterial agent used against methicillin-resistant Staphylococcus aureus (MRSA). A two-step synthetic strategy based on carbodiimide coupling and copper-catalyzed azide-alkyne cycloaddition was first exploited for the conjugation of PLA with PEG. The encapsulation of LNZ into medium-molecular-weight PLA-PEG NPs was carried out by different methods including nanoprecipitation and dialysis. The optimal PLA-PEG@LNZ nanoformulation resulted in 3.5% LNZ payload (15% encapsulation efficiency, with a 10:3 polymer to drug mass ratio) and sustained release kinetics with 65% of entrapped antibiotic released within 80 h. Moreover, the zeta potential values (from -31 to -39 mV) indicated a good stability without agglomeration even after freeze-drying and lyophilization. The PLA-PEG@LNZ NPs exerted antimicrobial activity against a panel of Gram-positive bacteria responsible for human infections, such as Staphylococcus aureus including MRSA, Staphylococcus epidermidis, Staphylococcus lugdunensis and vancomycin-resistant Enterococcus faecium (VREfm). Moreover, PLA-PEG@LNZ NPs showed inhibitory activity on both planktonic growth and preformed biofilm of MRSA. The antibacterial activity of LNZ incorporated in polymeric NPs was well preserved and the nanosystem served as an antibiotic enhancer with a potential role in MRSA-associated infections management.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Humanos , Linezolida/farmacologia , Polímeros , Antibacterianos/farmacologia , Polietilenoglicóis , Poliésteres , Testes de Sensibilidade Microbiana
6.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985768

RESUMO

BACKGROUND: The genus Cistus L. (Cistaceae) includes several medicinal plants growing wild in the Moroccan area. Acne vulgaris (AV) is a chronic skin disorder treated with topical and systemic therapies that often lead to several side effects in addition to the development of antimicrobial resistance. Our study aimed to investigate the bioactivity of extracts of two Moroccan Cistus species, Cistus laurifolius L. and Cistus salviifolius L., in view of their use as potential coadjuvants in the treatment of mild acne vulgaris. METHODS: Targeted phytochemical profiles obtained by HPLC-DAD and HPLC-ESI/MS analyses and biological activities ascertained by several antioxidants in vitro chemical and cell-based assays of the leaf extracts. Moreover, antimicrobial activity against Gram-positive and Gram-negative bacteria, and Candida albicans was evaluated. RESULTS: Analyses revealed the presence of several polyphenols in the studied extracts, mainly flavonoids and tannins. Cistus laurifolius L. and Cistus salviifolius L. possessed good biological properties and all extracts showed antibacterial activity, particularly against Staphylococcus aureus, S. epidermidis, and Propionibacterium acnes, identified as the main acne-causing bacteria. CONCLUSION: The results suggest that examined extracts are promising agents worthy of further studies to develop coadjuvants/natural remedies for mild acne treatment.


Assuntos
Acne Vulgar , Cistus , Cistus/química , Antibacterianos , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Inflamatórios/farmacologia , Compostos Fitoquímicos/farmacologia , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Testes de Sensibilidade Microbiana
7.
Carbohydr Polym ; 293: 119736, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798431

RESUMO

We describe a mild, ecofriendly, and straightforward two-step strategy for making core-shell Au@Ag bimetallic nanoparticles (BMNPs) for antibacterial nanomedicine and SERS imaging. The synthesis exploits the unique properties of the cationic polymeric cyclodextrin (PolyCD) as both reducing and stabilizing agent to obtain, monodispersed and stable Au@Ag BMNPs. PolyCD-driven protocol includes the synthesis of PolyCD-coated Au monometallic nanoparticles (MNPs) as a seed material for the subsequent growing of a silver shell. PolyCD was produced by polymerization of the azido modified ßCD monomers with epichlorohydrin and subsequent reduction of azido derivative. The amino groups, as hydrochloride salts (one for CD ring), are pivotal for the formation of BMNPs in mild conditions. Nanoantibiotics and SERS-nanoTag were prepared by complexation of Au@Ag BMNPs with Linezolid (Lz) and 4-mercaptophenyl boronic acid, respectively. Au@Ag@Lz complexes showed a good antibacterial activity against all tested microorganisms including the methicillin resistant Staphylococcus aureus (MRSA).


Assuntos
Ciclodextrinas , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Ouro , Linezolida/farmacologia , Polímeros , Análise Espectral Raman/métodos
8.
ACS Med Chem Lett ; 13(6): 916-922, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35707153

RESUMO

The high incidence of antibiotic resistance and biofilm-associated infections is still a major cause of morbidity and mortality and triggers the need for new antimicrobial drugs and strategies. Nanotechnology is an emerging approach in the search for novel antimicrobial agents. The aim of this study was to investigate the inherent antibacterial effects of a self-assembling amphiphilic choline-calix[4]arene derivative (Chol-Calix) against Gram negative bacteria. Chol-Calix showed activity against Escherichia coli and Pseudomonas aeruginosa, including antibiotic-resistant strains, and affected the bacterial biofilm and motility. The activity is likely related to the amphipathicity and cationic surface of Chol-Calix nanoassembly that can establish large contact interactions with the bacterial surface. Chol-Calix appears to be a promising candidate in the search for novel nanosized nonconventional antimicrobials.

9.
Antibiotics (Basel) ; 10(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34680738

RESUMO

The aim of this study was to assess the virulence, antimicrobial resistance and biofilm production of Escherichia coli strains isolated from healthy broiler chickens in Western Algeria. E. coli strains (n = 18) were identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Susceptibility to 10 antibiotics was determined by standard methods. Virulence and extended-spectrum ß-lactamase (ESBL) genes were detected by PCR. The biofilm production was evaluated by microplate assay. All the isolates were negative for the major virulence/toxin genes tested (rfbE, fliC, eaeA, stx1), except one was stx2-positive. However, all were resistant to at least three antibiotics. Ten strains were ESBL-positive. Seven carried the ß-lactamase blaTEM gene only and two co-harbored blaTEM and blaCTX-M-1 genes. One carried the blaSHV gene. Among the seven strains harboring blaTEM only, six had putative enteroaggregative genes. Two contained irp2, two contained both irp2 and astA, one contained astA and another contained aggR, astA and irp2 genes. All isolates carrying ESBL genes were non-biofilm producers, except one weak producer. The ESBL-negative isolates were moderate biofilm producers and, among them, two harbored astA, two irp2, and one aggR, astA and irp2 genes. This study highlights the spread of antimicrobial-resistant E. coli strains from healthy broiler chickens in Western Algeria.

10.
Nanomaterials (Basel) ; 11(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206184

RESUMO

Münchnones are mesoionic oxazolium 5-oxides with azomethine ylide characteristics that provide pyrrole derivatives by a 1,3-dipolar cycloaddition (1,3-DC) reaction with acetylenic dipolarophiles. Their reactivity was widely exploited for the synthesis of small molecules, but it was not yet investigated for the functionalization of graphene-based materials. Herein, we report our results on the preparation of münchnone functionalized graphene via cycloaddition reactions, followed by the spontaneous loss of carbon dioxide and its further chemical modification to silver/nisin nanocomposites to confer biological properties. A direct functionalization of graphite flakes into few-layers graphene decorated with pyrrole rings on the layer edge was achieved. The success of functionalization was confirmed by micro-Raman and X-ray photoelectron spectroscopies, scanning transmission electron microscopy, and thermogravimetric analysis. The 1,3-DC reactions of münchnone dipole with graphene have been investigated using density functional theory to model graphene. Finally, we explored the reactivity and the processability of münchnone functionalized graphene to produce enriched nano biomaterials endowed with antimicrobial properties.

11.
Nat Prod Res ; 35(6): 1057-1063, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31163999

RESUMO

The aim of this study was to investigate the polyphenolic profile and biological properties of leaves acetonic extracts from six Tunisian spontaneous plants of Marrubium vulgare L., Rhus tripartita (Ucria) D.C., Hernaria fontanesii J. Gay subsp. fontanesii, Ziziphus lotus L., Plantago ovata Forsk., Thymelaea hirsuta (L.) Endl. Bioassay-guided and HPLC-PDA-ESI-MS procedures demonstrated that R. tripartita contained the highest amount of phenolic compounds (1475.1 µg/g), followed by Z. lotus (1087.8 µg/g) and P. ovata (1027.6 µg/g). Interestingly, in R. tripartita myricetin-3-O-galactoside turned out to be the most abundant one. The plant extracts showed antimicrobial efficacy against Listeria monocytogenes, Staphylococcus aureus and S. epidermidis including methicillin resistant strains; no activity was detected against Gram-negative bacteria. R. tripartita revealed the best MIC and MBC values and caused significant decrease of S. aureus biofilm. Both R. tripartita and Z. lotus did not display any toxicity against Artemia salina Leach (LC50 > 1000 µg/mL).


Assuntos
Antibacterianos/farmacologia , Artemia/efeitos dos fármacos , Extratos Vegetais/toxicidade , Folhas de Planta/química , Polifenóis/análise , Testes de Toxicidade , Animais , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Bioensaio , Cromatografia Líquida de Alta Pressão , Dose Letal Mediana , Testes de Sensibilidade Microbiana , Polifenóis/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Ziziphus
13.
Future Microbiol ; 15: 1379-1392, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33085542

RESUMO

Aim: To develop electrospun mats loaded with Thymus capitatus (L.) essential oil (ThymEO) and to study their morpho-mechanical and antimicrobial properties. Materials & methods: Poly(lactic acid) (PLA) mats containing ThymEO were prepared by electrospinning. The effect of ThymEO on the morpho-mechanical properties of fibers was assayed by scanning electron microscopy and dynamometer measurements. The antimicrobial activity of ThymEO delivered either in liquid or vapor phase was assessed through killing curves and invert Petri dishes method. The cytotoxicity was also investigated. Results: The mechanical properties were enhanced by integrating ThymEO into PLA. Both liquid and vapors of ThymEO released from mats caused reductions of microbial viable cells. Negligible cytotoxicity was demonstrated. Conclusion: PLA/ThymEO delivery systems could be suitable for treating microbial infections.


Assuntos
Anti-Infecciosos/química , Lamiaceae/química , Óleos Voláteis/química , Poliésteres/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Liberação Controlada de Fármacos , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Óleos Voláteis/farmacologia
14.
J Mater Chem B ; 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32936201

RESUMO

We report herein the design, preparation, characterization and biological evaluation of a thermoresponsive gel based on binary mixtures of Pluronic® co-polymers F127 and P123, the latter being covalently functionalized with a nitric oxide (NO) photodonor (NOPD). The weight ratio between the two polymeric components is optimized in order to observe gelation of their saline water solution in the range of 32-35 °C, in order to exploit the therapeutic properties of NO for potential ocular applications. Rheological measurements were performed to evaluate the gelation temperature and, hence, to select a co-polymer mixture specifically appropriate for the reference application. Integration of the NOPD into the polymeric scaffold does not affect its rheological and spectroscopic properties, making it a good absorber of visible light both in solution and in the gel phase. Irradiation of the saline solution of the polymeric components with visible light triggers NO release, which occurs with an efficiency of more than one order of magnitude faster than that observed for the isolated NOPD. The polymeric system fully preserves such photobehavior after gelation as demonstrated by the effective NO photorelease from the gel matrix and its diffusion in the supernatant upon illumination. The gel is well-tolerated in both dark and light conditions by corneal cells, while being able to induce growth inhibition towards Staphylococcus aureus under visible light irradiation and has high moduli which can contribute to an adequate retention time within the eyes.

15.
BMC Complement Med Ther ; 20(1): 89, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183792

RESUMO

BACKGROUND: Hydrolates, complex mixtures containing traces of essential oils (EOs), are inexpensive, easy to make and less toxic than their corresponding EOs. The antibacterial and antifungal activity of the hydrolate of Coridothymus capitatus (L.) Reichenb. fil. (Lamiaceae) alone and in combination with antimicrobial drugs, such as tetracycline and itraconazole, were evaluated. METHODS: The chemical composition was analysed by gas-chromatography-mass spectrometry (GC-MS). Standard methods were performed to evaluate the susceptibility of some Gram-positive and Gram-negative bacteria, and Candida spp. to the hydrolate, in comparison with its EO. The hydrolate mechanism of action was assayed by propidium iodide and MitoTracker staining. Checkerboard tests were carried out for combinations studies. RESULTS: GC-MS identified 0.14% (v/v) of total EO content into hydrolate and carvacrol as a dominant component. The hydrolate showed a good antimicrobial activity against bacteria and yeasts. It exhibited a synergistic effect with itraconazole against Candida krusei, and an additive effect with tetracycline against methicillin-resistant Staphylococcus aureus strains. Hydrolate changed the membranes permeability of bacteria and yeasts and altered mitochondrial function of yeasts. CONCLUSIONS: Our study extends the knowledge by exploiting non-conventional antimicrobial agents to fight the emergence of antibiotic resistance.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lamiaceae/química , Óleos Voláteis/farmacologia , Leveduras/efeitos dos fármacos , Antibacterianos/uso terapêutico , Anti-Infecciosos/química , Antifúngicos/uso terapêutico , Cromatografia Gasosa , Quimioterapia Combinada , Itraconazol/uso terapêutico , Espectrometria de Massas , Óleos Voláteis/química , Tetraciclina/uso terapêutico
16.
Appl Microbiol Biotechnol ; 104(5): 1823-1835, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31925482

RESUMO

The current demand for new antimicrobial systems has stimulated research for the development of poly(lactic acid)/carvacrol (PLA/CAR)-based materials able to hinder the growth and spread of microorganisms. The eco-friendly characteristics of PLA and cytocompatibility make it very promising in the perspective of green chemistry applications as material for food and biomedical employments. The broad-spectrum biological and pharmacological properties of CAR, including antimicrobial activity, make it an interesting bioactive molecule that can be easily compounded with PLA by adopting the same techniques as those commonly used for PLA manufacturing. This review critically discusses the most common methods to incorporate CAR into a PLA matrix and their interference on the morphomechanical properties, release behavior, and antimicrobial activity of systems. The high potential of PLA/CAR materials in terms of chemical-physical and antimicrobial properties can be exploited for the future development of food packaging, coated medical devices, or drug delivery systems.


Assuntos
Antibacterianos/química , Cimenos/química , Poliésteres/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Cimenos/farmacologia , Embalagem de Alimentos/instrumentação , Poliésteres/farmacologia , Polímeros/síntese química , Polímeros/farmacologia
17.
J Mater Chem B ; 7(34): 5257-5264, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31384869

RESUMO

In this contribution we report the design, preparation, and physico-chemical, photophysical and photochemical characterization of photoactivatable microemulsions (MEs) based on Labrasol®, isopropanol and Lauroglycol® FCC as a surfactant, co-surfactant and oily phase, respectively. The MEs co-incorporate, in their oil phase, two lipophilic guests such as a red emitting singlet oxygen (1O2) photosensitizer (PS) and a tailored green emitting nitric oxide (NO) photodonor (NOPD). These two chromofluorogenic units absorb in different spectral windows of the visible range, and their individual photophysical and photochemical properties are well-conserved when co-entrapped in the microemulsions. These features permit the PS and NOPD to operate either individually or in tandem resulting in (i) red, green or both fluorescence emission, (ii) photogeneration of cytotoxic 1O2, NO or both and (iii) amplified photobactericidal action against Staphylococcus aureus due to the combined effect of these two antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Luz , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Emulsões/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Fármacos Fotossensibilizantes/química , Propriedades de Superfície
18.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370152

RESUMO

Ocular infection due to microbial contamination is one of the main risks associated with the wearing of contact lens, which demands novel straightforward strategies to find reliable solutions. This contribution reports the preparation, characterization and biological evaluation of soft contact lenses (CL) releasing nitric oxide (NO), as an unconventional antibacterial agent, under daylight exposure. A tailored NO photodonor (NOPD) was embedded into commercial CL leading to doped CL with an excellent optical transparency (transmittance = 100%) at λ ≥ 450 nm. The NOPD results homogeneously distributed in the CL matrix where it fully preserves the photobehavior exhibited in solution. In particular, NO release from the CL and its diffusion in the supernatant physiological solution is observed upon visible light illumination. The presence of a blue fluorescent reporting functionality into the molecular skeleton of the NOPD, which activates concomitantly to the NO photorelease, allows the easy monitoring of the NO delivery in real-time and confirms that the doped CL work under daylight exposure. The NO photoreleasing CL are well-tolerated in both dark and light conditions by corneal cells while being able to induce good growth inhibition of Staphylococcus aureus under visible light irradiation. These results may pave the way to further engineering of the CL with NOPD as innovative ocular devices activatable by sunlight.


Assuntos
Antibacterianos/farmacologia , Lentes de Contato Hidrofílicas , Células Epiteliais/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Córnea/citologia , Córnea/efeitos dos fármacos , Córnea/microbiologia , Córnea/efeitos da radiação , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Células Epiteliais/efeitos da radiação , Corantes Fluorescentes/química , Humanos , Luz , Óxido Nítrico/química , Óxido Nítrico/efeitos da radiação , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/efeitos da radiação , Processos Fotoquímicos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/efeitos da radiação
19.
PLoS One ; 14(7): e0219038, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31260476

RESUMO

Rapidly growing mycobacteria (RGM) are environmental bacteria found worldwide with a propensity to produce skin and soft-tissue infections. Among them, the most clinically relevant species is Mycobacterium abscessus. Multiple resistance to antibiotics and the ability to form biofilm contributes considerably to the treatment failure. The search of novel anti-mycobacterial agents for the control of biofilm growth mode is crucial. The aim of the present study was to evaluate the activity of carvacrol (CAR) against planktonic and biofilm cells of resistant RGM strains. The susceptibility of RGM strains (n = 11) to antibiotics and CAR was assessed by MIC/MBC evaluation. The CAR activity was estimated by also vapour contact assay. The effect on biofilm formation and preformed biofilm was measured by evaluation of bacterial growth, biofilm biomass and biofilm metabolic activity. MIC values were equal to 64 µg/mL for most of RGM isolates (32-512 µg/mL), MBCs were 2-4 times higher than MICs, and MICs of vapours were lower (16 µg/mL for most RGM isolates) than MICs in liquid phase. Regarding the biofilm, CAR at concentrations of 1/2 × MIC and 1/4 × MIC showed a strong inhibition of biofilm formation (61-77%) and at concentration above the MIC (2-8 × MIC) produced significant inhibition of 4- and 8-day preformed biofilms. In conclusion, CAR could have a potential use, also in vapour phase, for the control of RGM.


Assuntos
Antibacterianos/farmacologia , Cimenos/farmacologia , Micobactérias não Tuberculosas/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/crescimento & desenvolvimento , Mycobacterium abscessus/fisiologia , Micobactérias não Tuberculosas/crescimento & desenvolvimento , Micobactérias não Tuberculosas/fisiologia , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Plâncton/fisiologia , Especificidade da Espécie , Fatores de Tempo
20.
Polymers (Basel) ; 11(7)2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31284651

RESUMO

A straightforward and green method for the synthesis of gold, silver, and silver chloride nanoparticles (Au NPs and Ag/AgCl NPs) was developed using three different microbial exopolymers (EP) as reducing and stabilizing agents. The exopolysaccharides EPS B3-15 and EPS T14 and the poly-γ-glutamic acid γ-PGA-APA were produced by thermophilic bacteria isolated from shallow hydrothermal vents off the Eolian Islands (Italy) in the Mediterranean Sea. The production of metal NPs was monitored by UV-Vis measurements by the typical plasmon resonance absorption peak and their antimicrobial activity towards Gram-positive and Gram- negative bacteria (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa), as well as fungi (Candida albicans) was investigated. The biological evaluation showed no activity for EP-Au NPs, except against E. coli, whereas EP-Ag NPs exhibited a broad-spectrum of activity. The chemical composition, morphology, and size of EP-Ag NPs were investigated by UV-Vis, zeta potential (ζ), dynamic light scattering (DLS) measurements and transmission electron microscopy (TEM). The best antimicrobial results were obtained for EPS B3-15-Ag NPs and EPS T14-Ag NPs (Minimum Inhibitory Concentration, MIC: 9.37-45 µg/mL; Minimum Bactericidal Concentration/Minimum Fungicidal Concentration, MBC/MFC: 11.25-75 µg/mL).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...